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We have carried out electronic structure calculations for iron under high pressure using
pseudopotential plane wave methods. There is a controversy regarding the structure of iron at
moderate pressures (30–100 GPa) and temperatures (1000–2400 K), with different experiments
suggesting different structures, such as orthorhombic, double hexagonal close packed (dhcp),
etc. Our earlier calculations using the linear muffin-tin orbital method within
atomic-sphere-approximation had argued against the stability of the orthorhombic phase. The
more accurate calculations presented here predict qualitatively the same results. We have
additionally studied the stability of various phases of Fe at different compressions by
calculating phonon frequencies. These rule out the stability of the orthorhombic phase. To
validate our zero-temperature electronic-structure results at finite temperature, we have
compared the shock Hugoniot and melting properties of iron with the results of our electronic
structure calculations. Though we have used simplified models for these estimates, our
predictions compare well with the experimental data. We thus propose that these models can
be used to obtain the information about the high-pressure melting curves of planetary
materials. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
High-pressure and high-temperature physical properties
of solid are of great importance in many fields in science,
and in particular solid and molten iron play a central role in
geophysics as iron forms a major part of the Earth’s core.
Note that the seismological measurements of elastic wave
velocities show that Earth’s core has an average atomic
number of about 25, close to that of iron. The Earth’s core
extends to about 2900 km from the surface and stores a
substantial part of the planet’s energy, thus significantly
influencing internal dynamic processes. Seismic data re-
veal that the core contains a solid inner core and a liquid
outer core. There are seismological observations that com-
pressional waves that traverse the inner core travel 3 to 4%
faster along Earth’s spin axis than in the equatorial plane,
thus indicating an elastically anisotropic inner core. The
conventional interpretation of this anomaly is based on
the idea of a partial alignment of crystals of hexagonal
close packed (hcp) Fe [1].
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The phase diagram of Fe has been studied extensively
[2] because of its geophysical importance. In general,
there is consensus regarding the moderate pressure and
temperature phase diagram of Fe, with body centered cu-
bic (bcc)-Fe stable at ambient conditions, hcp-Fe stable
above about 15 GPa at low temperatures, and the face cen-
tered cubic (fcc) structure being stable above about 1300
K at low pressures. Some high-pressure, high-temperature
diamond anvil cell experiments [3, 4] suggest the occur-
rence of a new phase (β) above ∼40 GPa and ∼1,000 K;
but the structure of this new phase is still unresolved as
different sets of experimental data suggest different struc-
tures [3, 4]. Saxena and co-workers indexed the diffraction
pattern on a double hexagonal close packed (dhcp) struc-
ture for samples quenched from the temperature range
1,500–2,200 K at 30–60 GPa [3]. However, Andrault et al
concluded that iron goes to an orthorhombic structure in
the pressure range 30–100 GPa and at high temperature
(2375) K [4].
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We had earlier studied the relative phase stability of iron
[5] by the linear muffin-tin orbital (LMTO) method with
atomic sphere approximation (ASA) [6, 7]. Our detailed
comparison of the calculated total energies of fcc, hcp,
dhcp, orthorhombic, and monoclinic (with two atoms/cell,
which could be in the transit path of hcp- fcc) structures,
along with considerations of the entropy contributions to
free energy had indicated that the phase observed by An-
drault et al was not likely to have been the orthorhombic
structure that we examined.

With the controversy of this high-pressure, high-
temperature phase of iron still persisting, and in view
of the accuracy limitations involved in the LMTO-ASA
method, we have recently re-investigated the relative
phase stabilities of bcc, hcp, and orthorhombic (Pbcm)
phases by calculations using an accurate ultrasoft pseu-
dopotential. As we show below, these more accurate cal-
culations lead qualitatively to the same results, though
differ somewhat in quantitative details. We have also
studied the lattice dynamical properties of bcc, hcp and
orthorhombic phases within the density functional pertur-
bation theory as implemented in the PWSCF code [8],
and find that at high pressure both bcc and orthorhombic
phases are elastically unstable (i. e., some of the mode
frequencies become negative). If thermal effects are ne-
glected at ambient pressure, the calculated phonon disper-
sions for bcc phase agree well with available experimental
data [9]. The phonon dispersions for the hcp phase remain
unaltered under pressure, except for a small change along
the K-M direction and the known hardening of the modes.
To validate our 0 K results at finite temperature, we calcu-
lated the shock Hugoniot and melting curve using 0 K total
energies, and find that our theoretical results match very
well with existing experimental shock data. The melting
curve as a function of pressure is obtained according to a
recently published model based on dislocation mediated
melting [10], and also compared with results based on the
Lindemann criterion [11]. The shock melting point which
is taken as the intersection of these curves with the Hugo-
niot matches well with that previously estimated from the
shock measurements [12].

2. Details of calculations
The details of the methods used to estimate the thermal
contributions to the isotherm and Hugoniot for solids are
well documented in the literature [13, 14], and we summa-
rize here only the key aspects of the formulation. Briefly,
we have evaluated the internal energy at various volumes
as a sum of three terms,

E = Ec + Elat + Eele.

where Ec represents the 0 K (cold) total energy, Elat the
vibrational energy of the ions, and Eele the energy due to

thermal excitation of electrons. We have used the plane
wave self-consistent field (PWSCF) method with gener-
alized gradient approximation (GGA) [15] for exchange-
correlation energy to calculate Ec. The plane-wave calcu-
lations were carried out with an ultrasoft pseudopotential
with 3d74s1 as valence configuration. For the plane-wave
expansion we take 25 Ry as the energy cutoff. We use
290 k-points for the bcc, and 146 k-points for orthorhom-
bic, hcp and dhcp structures for sampling the irreducible
wedge of the Brillouin zone (BZ). Elat and Eele are evalu-
ated by using the relations shown below [13, 14]:

Elat = 3kBTD(θD/T),

Eele = 0.5β T2,

where β represents the electronic specific heat, D (θD/T)
is the Debye function, and θD is the Debye temperature; T
and kB are temperature and Boltzmann’s constant, respec-
tively. The lattice vibrational energy is estimated using the
Debye-Mie Grüneisen model, which is based on the as-
sumption that the vibrational energy levels of ions are the
same as those of harmonic oscillators [16]. The electronic
thermal excitation energy is estimated by the free-electron
formula using density of states at the Fermi level obtained
by our PWSCF calculations. The corresponding equation
for pressure is given by [17, 13]

P = −�Ec/�V + γlatElat/V + γeleEele/V,

where,

Pele = γeleEele/V,

Plat = γlatElat/V,

γ ele and γ lat being the electronic and lattice Grüneisen
parameters. In addition, γ lat (P) under pressure (P) at
density (ρ) was obtained by

γlat(P) = γlat(0)ρ0/ρ + 2/3(1 − ρ0/ρ)

The solid Hugoniot (locus of all states that reached by a
single shock from a given initial state) is obtained by solv-
ing self-consistently the following conservation equation
for the internal energy:

E − E0 = (P + P0)(V0 − V)/2,

where E, P, V refer to the shocked material, and E0, P0,
V0 refer to the unshocked material.

The melting curves under pressure are obtained by two
methods, i.e.,

(i) Lindemann Law
This is based on the hypothesis that elements melt when

the amplitude of atomic vibration is a fixed fraction, ∼=1/8,
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Figure 1 Calculated cold energy-volume relations for bcc and hcp Fe.

of the interatomic distance [11]. The melting temperature
Tm(P) at pressure P is then given by

Tm(P) = Tm(0) (V/V0)2/3 exp[2γlat(1 − V/V0)],

where Tm(0) is the ambient pressure melting temperature.
(ii) Dislocation -mediated melting
In this case, the solid to liquid transition is modeled as

a transition from a translationally symmetric (ordered) to a
translationally disordered system, and the order-disorder
transition temperature is taken as the melting tempera-
ture [10]. The melting temperature at pressure P is then
determined by,

G[P, Tm(P)] νWS[P, Tm(P)]/Tm(P) = const.

Under the assumptions that the shear modulas (G) and
Wigner-Seitz volume (νWS) are weakly dependent on tem-
perature (i.e., respective higher temperature values are
taken equal to the values at room temperature) the follow-
ing relation can be derived,

Tm(P) = Tm(0)(1 + PB′/B)−(1/B′)

[1 + PG′/G(1 + PB′/B)−(1/3B′)],

with P ≤ 2B

where B, G are ambient-condition bulk and shear modulii,
respectively, and B′, G′ are the first pressure derivatives
of the respective quantities at ambient pressure [18].

3. Results and discussion
In Table I, we give calculated equilibrium volume, bulk
modulus, and its pressure derivative both for bcc and hcp
phases of iron, which we obtained by fitting our calculated
total energies to the Birch-Murnaghan equation of state.
These results are in good agreement with experiments [19,
20] and earlier calculations [21–23].

Fig. 1 depicts the comparison of first-principles calcu-
lated 0-K total energies between hcp and bcc phases of

T AB L E I Comparison of the calculated physical quantities of iron and
experimental data

Properties Our calculations Experimental [21]

Bcc Fe
Equlibrium volume 78.732 (a.u.) 79.170 (a.u.)
Bulk modulus (B) 179.6 (GPa) 173 (GPa)
Pressure derivative of B 3.66 5.0
Magnetic moment 2.38 µB/cell 2.12 µB/cell
Hcp Fe Other calculations [7]
Equlibrium volume 68.96 (a.u.) 68.86 (a.u.)
Bulk modulus (B) 298.7 (GPa) 291 (GPa)
Pressure derivative of B 3.55 4.4
Magnetic moment 0.0 0.0

iron as a function of volume per atom, and thus shows
the stability region of these two phases which is con-
sistent with the existing literature [22]. We have also
calculated total energies for fcc, dhcp and orthorhom-
bic phases, and found that for dhcp and fcc phases they
are very close to that of the hcp phase (∼3–4 mRy), and
that of orthorhombic phase is about 5 mRy higher than
the hcp energy. Also our 0-K geometry optimization for
the orthorhombic structure shows that it is not elastically
stable; in fact it transforms to the hcp structure. These
results are consistent with the high pressure phonon fre-
quency calculations which show that some modes give
negative frequencies in the bcc and orthorhombic struc-
tures, thus confirming their elastic instability. Note that
at ambient pressure the phonon frequencies as shown in
Table II match well with the experimental data of Brock-
house et al. obtained from inelastic neutron scattering
measurements [9]. Moreover the reliability of our calcu-
lations have been confirmed by comparing the phonon
frequencies (Fig. 2) in the hcp structure with those of
Söderlind et al. obtained by FP-LMTO based calcula-
tions [23]. Hence our calculations argue against the sta-
bility of the orthorhombic phase at 0-K, and also at
high temperature because it is unlikely that the thermal
contributions will compensate the energy differences of
10 mRy [5].
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Figure 2 Calculated phonon dispersion of non-magnetic hcp Fe at
212 GPa pressure along the different high symmetry directions of BZ.
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Figure 3 Calculated Equation of states for (a) bcc Fe (b) hcp Fe. Experi-
mental data are from Jephcoat et al. [19] and Mao et al. [20].

In Figs 3a and b we compare our P-V isotherm (includ-
ing room temperature effects) calculated in magnetic bcc
and non-magnetic hcp phases respectively along with the
available experimental (DAC) data. It is clearly seen that
at low pressures our P-V curve is in agreement with the
data of Jephcoat et al. [19] while at higher compressions
it agrees with those of Mao et al. [20].

We have also studied the magnetic moment of the bcc
phase as a function of compression. We observe that the
magnetic moment of the bcc structure decreases with com-
pression (Fig. 4), and at around a volume compression of
0.51 the magnetic moment becomes 0.60 µB, in good
agreement with the earlier full-potential LMTO calcu-
lations [23]. The collapse of magnetic moment can be
understood in terms of the decrease of density of states at
the Fermi level under pressure. Therefore, the bcc phase
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Figure 4 Calculated variation of Magnetic moment of bcc Fe with com-
pression. Calculated equilibrium volume is 78.73 a. u.

could have an appreciable magnetic moment in the Earth’s
core, and hence it has been argued that because of mag-
netic entropy the bcc phase may be more stable than the
non-magnetic hcp phase [21].

However our EOS results and their comparison with the
experimental data (see Fig. 3) do not support this view.

Fig. 5 shows the comparison of calculated solid Hugo-
niot with the experimental data obtained by Brown et al.
[12]. For shock Hugoniot calculations we have used 0-
K isotherm, lattice and electronic Grüneisen parameters
along with thermal contributions of bcc phase up to V/V0

= 0.8 and of hcp phase for higher compressions, in accor-
dance with the stability of these phases discussed earlier.
It is seen from Fig. 5 that our calculated solid Hugoniots
are in excellent agreement with experimental data [12].

Fig. 6 shows our calculated Hugoniot curve in the
P-T plane along with the melting curves calculated from
the Lindemann law and dislocation-mediated melting
model.

Our calculated melting temperatures (Tm) are
4803 K at P = 229 GPa (Lindemann Law) and 9251 K at
P = 388 GPa (dislocation mediated melting for bcc-Fe).
Dislocation mediated melting curve in the bcc phase is
in better agreement with laser heated Diamond-anvil cell
(DAC) data of Williams et al. [24]. However both these
melting curves differ with the melting data of Boehler
et al. [25]. It may be noted that the shock melting is un-
derestimated by the Lindemann law. However our calcu-
lated solid Hugoniot compare well with the Brown et al’s
experimentally-based estimate of Hugoniot P-T data even

T AB L E I I Comparison of phonon frequencies for magnetic bcc phase along [111] symmetry direction of BZ with that of neutron inelastic measurements
of Brokhouse et al. [9]

ξ 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Theoretical
[ξξξ ]

ν(T) (THz) 2.13 4.25 5.91 6.90 7.50 7.93 8.20

ν(L) (THz) 4.18 7.25 8.03 6.90 5.69 5.65 7.22
Experimental

[ξξξ ]
ν(T) (THz) 2.22 ±0.06 4.56 ±0.06 6.26 ±0.06 7.15 ±0.08 7.90 ±0.10 8.24 ±0.10 8.40 ±0.25

ν(L) (THz) 4.52 ±0.08 7.72 ±0.08 8.38 ±0.11 7.15 ±0.08 5.78 ±0.08 6.22 ±0.08 7.72 ±0.10
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Figure 5 Calculated solid Hugoniot of iron for bcc and hcp phases. Exper-
imental data are from Brown et al. [12]. V0 is the volume under ambient
condition.
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Figure 6 Calculated P-T Hugoniot, and melting curves based on
Lindmann law, and dislocation mediated melting for bcc and hcp phases.
Experimental results are from Brown et al. [12] , Williams et al. [24] and
Boehler [25].

above 229 GPa pressure. For comparison we have also
shown in Fig. 6 the melting curve for the hcp-Fe based
on dislocation mediated model, which gives much higher
melting temperature.

4. Conclusions
We can conclude based on our first-principles electronic-
structure and phonon calculations that the orthorhombic
phase of iron is not stable at any pressure, over the range
examined, at zero temperature. It is also unlikely that
the thermal contributions will be able to compensate for
the energy difference of about 5 mRy, relative to other
structures, at high temperature. This is consistent with the
findings from energy-dispersive experiments [26] with
double-sided laser heating in the diamond-anvil cell (for
reducing thermal gradients) which do not support the pres-
ence of an orthorhombic phase. For Hugoniot and melting

calculations we have used simple models, but their esti-
mates are close to the experimental data. Hence these
models can be used to predict melting at high-pressures
conditions, for which experimental measurements and ab
initio calculated results may otherwise be difficult to ob-
tain.
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